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The subject of the present effort is numerical developments in support of a BiGlobal linear insta-
bility analysis[26] of the compressible three-dimensional steady laminar basic flows obtained within
the framework of F61775-99-WE049. The first objective becomes extraction from the aforementioned
results of the appropriate two-dimensional basic flow data. The assumption is made, and is verified
in the numerical results to be increasingly applicable as the flow Mach number increases, that the
dependence of the basic flow on an appropriately defined downstream spatial direction is much weaker
than that in the wall-normal and the circumferential directions of the elliptic cone. In terms of the
basic flow, derivatives in the downstream direction are thus neglected; in the disturbance equations an
eigenmode Ansatz is introduced in this direction. A discussion is presented regarding the choice of coor-
dinate system for the analysis. The viscous disturbance equations of the two-dimensional compressible
partial-derivative eigenvalue problem are presented in cartesian coordinates. It is subsequently pro-
posed that on grounds of numerical efficiency the analysis be performed in an inviscid framework on
the elliptic confocal coordinate system. The governing equation is derived in the chosen coordinate
system and numerical means for its discretisation are discussed.

In an inviscid global linear analysis the issue of avoidance of singularities of the governing equations
through indentation of the path of integration must be addressed. However, the concept of direction
is ill-defined in the framework of an inviscid global analysis. One alternative to shooting in both the
local and the global theory is to pose the disturbance equations as a matrix eigenvalue problem on
complex calculation grids. A new spectral collocation method has been devised, which employs this
technique and is validated by solving several one-dimensional linear eigenvalue problems on different
families of collocation grids. Tensor products of the optimal grids identified through the present effort
can be employed for the solution of the two-dimensional eigenvalue problem at hand, if marginally
amplified/damped or neutral modes are sought. The suite of numerical tools proposed for the BiGlobal
instability analysis has been validated. First, model Poisson problems have been solved on the elliptic
confocal coordinate system and the expected exponential convergence property has been demonstrated.
Subsequently, three flow configurations in the subsonic, supersonic and hypersonic regimes have been
solved. Most interestingly, large-scale non-azimuthally-periodic disturbances, inaccessible to classic
linear theory, have been identified in all low regimes.

t This material is based upon work supported by the European Office of Aerospace Research and Development, Air Force Office
of Scientific Research, Air Force Research Laboratory, under Contract No. F61775-00-WE069. Work monitored by Dr. Roger L.
Kimmel
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Inviscid global instability of flow on an elliptic cone 3

1. Introduction

The present effort concentrates on global linear instability analyses of the steady laminar flows
on an elliptic cone presented in [25]. These flows are intrinsically three-dimensional; as a matter of
fact the three-dimensionality of the geometry of the elliptic cone accounts for the departure of the
laminar-turbulent transition process from the fairly well-understood scenaria on circular cones [21]
and other axisymmetric bodies of revolution. Shedding light on the essentially three-dimensional tran-
sition process on the elliptic cone from the perspective of global linear analysis provides motivation
for several current experimental [15, 16, 12, 6] and numerical [29, 30] efforts, as well as for the theo-
retical/numerical methodology described herein.

The most general framework in which a global linear instability analysis can be performed is that
of three-dimensional linear theory in which all three spatial directions are resolved. This is consistent
with the separability in the governing equations of time on one hand and the three spatial directions
on the other. Formulation of the three-dimensional global linear eigenvalue problem is straightforward;
however, its numerical solution is not feasible with present-generation computer architectures. Indeed,
coupled resolution of dim spatial directions requires storage of two arrays for the real and imaginary
parts of the eigenfunctions, each of size

5 x 20 x N2X4m 109 Gbytes

of core memory in primitive variables formulation and 64-bit arithmetic if N points resolve each
spatial direction. The size of each array is doubled if 128-bit arithmetic is deemed to be necessary
[7]. If a numerical method of optimal resolution power for a given number of discretisation points is
utilised, such as spectral collocation, experience with the one-dimensional eigenvalue problem suggests
that in excess of N = 64 must be used for adequate resolution of eigenfunction features at critical
Reynolds numbers typical of boundary layer flows. The resulting sizes of the respective matrices are

~ 22 Tbytes ~ 5.4 Gbytes and ~ 1.3 Mbytes,

if dim = 3,2 and 1, respectively. It becomes clear that while the classic linear local analysis (dim =
1) requires very modest computing effort and is indeed part of industrial prediction toolkits, the
main memory required for a three-dimensional linear instability analysis is well beyond any currently
available or forecast computing technology. Between the two limits, a global linear analysis based
on solution of the two-dimensional linear eigenvalue problem is well feasible and has indeed been
performed using a variety of numerical methods and platforms, delivering results inaccessible to local
theory (e.g. [22, 24]) or new insights into old instability problems (e.g. [28]); a review is presented in
2

It thus becomes clear that in order to proceed with a global analysis of the elliptic cone basic flows
the disturbance equations must be posed in the framework of solution of a two-dimensional eigenvalue
problem. The underlying assumption is that the basic flow is independent of one spatial direction; in
the problem at hand an appropriate direction must be identified such that the dependence of the basic
flow on it is much weaker than that on the other two spatial directions. While the arc-length direction
is an obvious candidate to be considered as homogeneous in the global instability problem, the choice
of the other two spatial directions is not unique. Indeed, three alternative directions complementing
the arc-length and wall-normal coordinates are identified in what follows. From the point of view of
numerical feasibility, the elliptic confocal coordinate system is one natural basis on which to express
and collocate the various forms of the two-dimensional compressible eigenvalue problems.

The viscous two-dimensional eigenvalue problem is derived herein in cartesian coordinates. From it
the generalised Rayleigh equation presented in [25] may be derived; the latter is expressed here in the
elliptic confocal coordinate system. If no loss of physical information is to be expected it is attractive
to consider working with the matrices discretising the inviscid global eigenvalue problem, whose size
is (3/5)? that of their viscous counterparts. However, a new issue is raised when working in an invis-
cid framework, namely the appearance of critical layers and potential singularities of the governing
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4 V. Theofilis

equations. This problem is well-known in local linear theory, where its solution through indentation
of the path of integration is straightforward. This is so because there is no ambiguity in defining the
path of integration; in other words, the line on which basic flow data is defined in a boundary-layer
context is the wall-normal spatial direction. The necessary basic flow data are obtained on the in-
dented path by Taylor expansion around the critical layer. In such a framework, efficient numerical
approaches exist, based on finite-differences and shooting [8], to obtain the leading eigenvalue. In a
global analysis on the elliptic cone, on the other hand, the basic flow is defined on a plane and both
concepts of integration-path and shooting are inapplicable. This led us to propose a new algorithm
for the integration of the inviscid disturbance equations, based on complex spectral collocation grids.
Technical details are presented by Theofilis et al. [13]. Tensor products of the optimal grids identified
through the present effort will be employed for the solution of the two-dimensional eigenvalue problem
at hand.

Progress has been made on several fronts. Firstly, in § 2 we present for the first time the viscous
compressible partial-derivative eigenvalue problem in cartesian coordinates. The inviscid limit of the
eigenvalue problem is then recalled [25] as being the most efficient method of analysis from a numerical
point of view. The elliptic confocal coordinate system is thus introduced in § 3, which on the one hand
preserves the numerical advantage of efficiency and on the other offers natural means of resolving
boundary-layer flow features by an analytic exponentially stretched body-fitted coordinate system.
Secondly, we also discuss in this section the continuing quest to express the equations of motion
in alternative coordinate systems. An approximation of the type made to derive the two-dimensional
eigenvalue problem in cartesian coordinates must be made subsequently and it is interesting to compare
the respective systems with respect to optimal representation of the underlying physical instability
mechanisms. Ultimately, experience from experiment could decide the optimal choice of coordinate
system.

The main thrust of the current effort has been along the first path and in § 4 we present the numerical
means by which the generalised Rayleigh equation may be collocated on the elliptic confocal coordinate
system and solved as either a temporal or a spatial two-dimensional eigenvalue problem at the same
level of numerical effort. However, in view of the issue of two-dimensional critical layers, particular
to the inviscid two-dimensional eigenvalue problem, we proceed in § 5 to elaborate on the concept of
a complex calculation grid. The latter permits performing inviscid instability analyses by solving the
eigenvalue problem in a direct manner. Several validation cases in the limit of one-dimensional linear
inviscid equations are presented. Attention is then focussed in § 6 on the BiGlobal eigenvalue problem.
First, the proposed spectral collocation numerical discretisation scheme is validated by solution of
Poisson problems on the elliptic confocal coordinate system. Subsequently, two-dimensional planes of
steady basic flow data on different aspect ratio elliptic cones are extracted from three-dimensional
solutions at M = 0.5,4 and 8. No analysis from a physical point of view as such has been performed
here; rather, attention has been focussed on numerical aspects, such as feasibility of the methodology,
resolution and its influence on different classes of eigendisturbances and extent of the integration
domain and its relation to the boundary conditions imposed. It is demonstrated that application of
BiGlobal analysis is relatively straightforward in terms of the resolution necessary for subsonic flow,
although the assumptions underlying the derivation of the compressible generalised Rayleigh equation
are increasingly applicable to supersonic/hypersonic flow. Classes of BiGlobal eigendisturbances that
can be recovered accurately in high-speed flow are identified. Interestingly, results obtained provide
indications that BiGlobal instability theory can be utilised as an alternative to classic linear theory
in investigations of vortex breakdown over delta wing configurations in high-angle of attack and as a
tool alternative to DNS in computational aeroacoustics studies. A short discussion in § 7 summarises
the present effort, while we use the Appendix to present technical details.

Contract No. F61775-00-WE069



Inviscid global instability of flow on an elliptic cone 5

2. The viscous compressible two-dimensional eigenvalue problem

In this section we start from first principles to derive the equations describing the compressible two-
dimensional eigenvalue problem. This governs small-amplitude perturbations developing upon a steady
laminar compressible basic state which is inhomogeneous in two spatial directions. The amplitude
functions themselves are two-dimensional functions of the resolved spatial directions. We choose to
focus the discussion on cartesian coordinates in view of their wider utility as compared with any of
the body-fitted elliptic cone coordinate systems discussed in the previous section. In this framework
any flow quantity may be decomposed as

q=aq(z,y) +eda(z,y) £, (2.1)
where

E = exp [z(ﬁz — wt)]

and q = (p,u,v,w,p)T is the vector of the three-dimensional nonconservative variables embed-
ded in cartesian space Ozyz, q = (p(z,y), u(z,y),v(z,y), w(z,y),p(x,y))T is the vector of the two-
dimensional steady basic flow quantities and § = (p(z,y),4(z,y), 9(z,y), w(z,y), p(z,y))" is that of
the amplitude functions of the three-dimensional disturbances, which are periodic in one spatial di-
rection alone, z. As usual, an equation of state for ideal gases relates pressure p and density p through
temperature 7',

2
YMZp = pT, (2:2)
and a general law relating viscosity p and temperature is adopted. Upon decomposition of temper-
ature and viscosity into their steady two-dimensional and unsteady disturbance components one also
has

I
N

(z,y) +eT(z,y) E,

T
p=rnzy) +eiz,y) E. (2.3)

I
=

Further quantities introduced are the viscous stresses

X = (u/Re)[4/3uz — 2/3(vy + w,)] (2.4)
™Y = (u/Re)[4/3v, — 2/3(ug +w,)] (2.5)
2% = (1) Re)[4/3w, — 2/3(uy + vy)] (2.6)
Y = 7YX = (u/Re)(uy + vz) (2.7)
X% = 12X = (u/Re) (u, + wy) (2.8)
Y2 = 77Y = (u/Re) (v, + wy), (2.9)
and the viscous heat fluxes
Q¥ =-— WL (2.10)

(y —1)M?PrRe
Contract No. F61775-00-WE069



6 V. Theofilis

v _ _ wTy 2.11
@ = (y —1)M?PrRe (2.11)

Z MTZ
= — . 2.12
@ (y —1)M?PrRe (2.12)

In this context, the equations of motion can be written in conservative form,

pt + (pu)e + (pv)y + (pw); =0 (2.13)
(pu)s + (p + pu?), + (puv)y + (puw), — Tj(X - T;(Y - TZXZ =0 (2.14)
(pv): + (puv)y + (p + p’UQ)y + (pvw), — XY — T;/Y Y2 =9 (2.15)
(pw); + (puw)z + (pvw)y + (p + pw?), — 757 — T;/Z — 122 = (2.16)
et + [u(e + p)lz + [v(e +p)]y + [w(e +p)l.
+Qr +Qy + Q7
— [UTXX +orXY + wTXZ]
xr
- [’U,TXY +or¥Y 4+ 'wTYZ]
y
—[u'rXZ +or¥? +w'rZZ] =0 (2.17)
z
where
e= Lp + 1,o(u2 + 0% + w?) (2.18)
v—1 2 )

and subscripts denote partial differentiation with respect to an independent variable. The global
viscous linear analysis proceeds by substitution of (2.1) into (2.13-2.17) upon which systems of equa-
tions at O(1), O(e) and O(g?) are obtained in a manner conceptually identical with that of classic
linear theory [17]. The terms at O(1) represent the steady basic state, those at O(e?) are neglected in
a linear framework, while the system of equations to be solved at O(e) reads

Contract No. F61775-00-WE069



Inviscid global instability of flow on an elliptic cone 7

Disturbance Continuity

9Py + 0 py + WP, + g+ P (—iw+ i B+ Ty + ) +P BB+ Dy +ag) =0, (219)

Disturbance X-Momentum

+p vy +a (—iw+iB0+0,+24,) )
+p (miwa+ifaw+iBud + 0ty + 0y + G0y + udy +2UUs +2Uly)

1 o N - - N
+3Re{_3“?/”?/_3uuyy+2Z/8'w:“x+2Uy/1w+2’vy,u$—4uzuz

— 7 (=8B + Bl + i fby + bay + 4ihgy) f =0, (2:20)

Disturbance Y-Momentum

Py +200p, +0° py + 40D, + UdP, + UV Py

+p {7 (—iw+iBD+ 20y +Ty) + 0T, )

1P (—iwd+iBOW+i VW + 29Ty + 20 by + 0y + Uiy + 04T, + Ty)
1 o N . N . L
m{+2Zﬁwﬂy_4llyvy_4Ny'0y_3113/‘wy_4:“”yy_3uyr“:c
=8y fiz + 2 iy T + 2Ty b — 3 g U = By Oz — f3 By — 31V

— 7 (=880 4+ Bby + 40y +flay +304s) } =0, (221)
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8 V. Theofilis

Disturbance Z-Momentum

_3iﬁﬂﬁm+2iﬂﬂaz _3ﬂz'u_]z _3ﬁmwa:_3/)"u_]zz
—ﬁ(—M¢w+¢ﬁ@+3ww+¢ﬁm+ﬂwm)}:m (2.22)

Disturbance Energy

W

25+ (y—1) |p (@ + P+ @?) +2p (at+ 0D + D)
2(7—1){ [ ( ) ]}
1 a g L L
+7{(7_1) u3pm+27pu$—pv2uz+7p02uz—2pvvu$

2(y-1)

12y U0 Uy — P2 Uy + 7y P Uy — 2P0 W Ty
2y PDWW Uy + 2y Pllg — PO Gy + Y PTGy

@[29pe + (v 1)

(3ﬁ2ﬁE+62ﬁr+ﬂ?ﬁ$+Gﬁﬁﬂ$+2ﬁ66$+2ﬁﬁnm0]}

e

+ + 2Py —200P, +2700p, — 2w P,

2y WD Py — B pr+ YV P — W P+ YD Pa
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dl

1 . L L
+2(7—1){(7_1) 7 py + 27Dy — PU° Ty +ypU’ By — 2900

+2ypui v, — pw? Uy + v pw? Uy —2pWWUy + 27 pWW Uy
+2y Pty — pu’ Oy +ypu’ by — pw? by + ypw: by

+3 (=1 +7) 9° (pvy + piy)

¥ [29p,+(v—1)

¥

Y

(@25, +30° 5, + WP, + 20ty + 650, + 25w, )

v . . . o o
-I-m {27py—2uupy-|—2'yuupy—2wwpy+2'yww

el

—ﬂQﬁy+7ﬂ2py w? py+7w Py —2pUUy + 277 PUUy

1 U . . . .
-I-ﬁ{—I—3vuyum—|—3fuuyum+3vuyuz—QZﬁuwuz—QMUyux
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+@{3iﬁu‘% = 20y i, + AT, Ty + 31 BT Wy — 27 Tay + AT g }

— 20 By — 24 Ugy — 275 Uay +4ﬂam+4mm}

57 {31B DT, + 47, B, + 31 B, + 4Ty, — 270, Ty — 2Willy |

v C o - — . L a— A -
+@{—QZﬂwuy+4uyvy+4uyvy—2zﬂuwy+4pvyy

+ ATy — 2 iy Ty — 2Ty Gy — 21 Ty — 2Tl |

Contract No. F61775-00-WE069



Inviscid global instability of flow on an elliptic cone

—ipB . o
T {2w(vy+uw)—3(va+uww)}
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12 V. Theofilis

These equations may be recast as follows. First, in line with analogous practice of classic linear
theory, viscosity is taken to be a function of temperature only. A law u = u(T') is considered to relate
the two quantities, taking viscosity in general to be a nonlinear function of temperature. A Taylor
expansion about the basic state

_ N _ ou ~
= u(T +eT) ~ u(T) + sa—%T +0(e?) (2.24)

may then be used to identify the basic state viscosity and relate that of the disturbance field to the
disturbance temperature 7" through

ol »
= —=T. 2.25
b= o7 (2.25)
Equation (2.25) may be used to eliminate ji from the system (2.19-2.23) in favour of the disturbance
temperature. The latter is related with the respective disturbance pressure and density of the medium

through

yM?%*p = pT' + Tp, (2.26)
which may be used to eliminate one of p, g, T and cast the final system to be solved in terms of five
two-dimensional disturbance amplitude functions, the three velocity components and two thermody-

namic variables. Once a solution of the eigenvalue problem is known (2.26) may be used to calculate
the eliminated third thermodynamic disturbance quantity.

(a) Challenges and potential simplifications of the compressible two-dimensional eigenvalue problem

The challenges associated with a numerical solution of the system (2.19-2.23) can be classified into
two categories. One is related with issues analogous with those of the incompressible two-dimensional
eigenvalue problem [26] and stems from the simultaneous resolution of two spatial directions, in this
case the problem being aggravated by the existence of an additional constitutive equation to be solved.
In addition, the system to be solved becomes increasingly stiff with increasing Reynolds number;
note that the diagonal dominance of the matrix decreases linearly with Re. This leads to the need
for simplifications, which will be discussed in what follows. The second class of challenges is raised
by compressibility. From a numerical point of view mixed derivatives of both the basic flow and the
disturbance quantities appear, which couple the system stronger but are prone to propagating errors in
the numerical discretisation in one spatial direction into the entire resolved plane. Cubic nonlinearities
give rise to the need for finer discretisation of the compressible eigenvalue problem compared with its
incompressible counterpart. An additional source of stiffness in the eigenvalue problem stems from
the quadratically decreasing diagonal dominance of the system of equations with increasingly high
supersonic and hypersonic Mach number. On the positive side, the issue of boundary conditions for
the (elliptic) incompressible partial-derivative eigenvalue problem is absent in compressible flow, where
pressure becomes a variable to be solved for as opposed to a constrain to be imposed.

In dealing with the issue of the size of the eigenvalue problem one notes that, unlike the incom-
pressible eigenvalue problem where considering a wavenumber vector perpendicular to the plane on
which the basic flow develops, i.e. setting w = 0, leads to the ability to recast the eigenvalue problem
as one with real coefficients requiring approximately half the computing resources for its numerical
solution compared with the original complex system, in compressible flow this simplification is not
possible. This is so on account of density and viscosity variations which are absent in incompressible
flow. Focussing on the application at hand, even if such a simplification were possible it would be
physically meaningless, since the predominant flow direction on the elliptic cone coincides with that of
the wavenumber vector. Using the same physical rationale for the development of the basic flow on the
elliptic cone one may attempt to neglect the lateral and wall-normal velocity components, 4 = v = 0.

Contract No. F61775-00-WE069



Inviscid global instability of flow on an elliptic cone 13

One radical simplification from a numerical point of view is offered by the inviscid limit of the
equations of motion, Re — oo, M — 0, which removes both these sources of stiffness in the system to
be solved. However, this resulting system is a coupled problem for five variables, say (p, 4,9, w,T)". In
this respect, the issue of size of the eigenvalue problem remains unresolved. Furthermore, an inviscid
analysis introduces a major currently unresolved physical issue, that of the extension of the concept
of a critical layer (introduced and unambiguously defined in the context of one-dimensional instability
analysis) in two resolved spatial directions. A first step towards resolving the issue of critical layers in
two spatial dimensions numerically is discussed in the next section.

(b) One inviscid limit
The only means by which an inviscid analysis could be performed at a lower numerical effort
compared with the various forms of the original problem is the case

a=v=0, w#0, (2.27)
which results in the compressible generalisation of the Rayleigh equation [25]

(5 2) - gl (G- 2) - g2+ P25 om0

where £ = §/0z% + 0/0y? — 2. This most simple form in which the compressible two-dimensional
eigenvalue problem may be recast can be solved as a cubic equation for either a complex temporal
eigenvalue w, taking 8 to be a constant real wavenumber parameter in the z spatial direction, or for
the complex spatial eigenvalue (3, taking the frequency parameter w to be a real constant. Notably
there is no overhead when solving the spatial compared with the temporal two-dimensional eigenvalue
problem (2.28).

From a physical point of view the implication of addressing (2.28) as opposed to (2.19-2.23) is
that the three-dimensional elliptic cone geometry is reduced to a three-dimensional elliptic cylinder
geometry which is periodic in the third direction with a periodicity length L, = 27 //3. The analysis may
be performed at a z = zy = const. location along the axis of rotation of the cone taking, of course, as a
basic flow an extract from the correct three-dimensional basic steady state already calculated. Having
performed the analysis, one needs to compare the wavelength of any globally unstable mode predicted
with the lengthscale of the neglected three-dimensionality of the elliptic cone surface downstream of
the location z = zy. If the first length scale is much smaller than the second, the predicted instability
may be physically realisable. Otherwise, either or both of the approximations (2.27) and an inviscid
analysis must be abandoned in favour of viscous analysis based on numerical solution of the full system
(2.19-2.23). At this point in time, which of the two scenaria will prevail is unclear; the potential savings
realised by the inviscid approach make the latter the obvious candidate to commence global instability
analyses on the elliptic cone. In the next chapter we develop the two-dimensional grid on which an
inviscid global instability analysis may be performed and provide the elements forming the basis to
derive the three-dimensional extension of the global eigenvalue problem for the application at hand.
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14 V. Theofilis
3. On frames of reference on the elliptic cone

In the preceding discussion we justified interest in a global linear analysis based on the two-
dimensional eigenvalue problem from the point of view of numerical feasibility. From a physical point of
view this approach can be justified using one of the fundamental assumptions of boundary-layer theory,
namely that the dependence of the basic flow quantities on the downstream direction (to be defined
shortly in the context of the elliptic cone) is O(1/Re) weaker than that on the wall-normal direction,
Re denoting the free-stream Reynolds number of the flow. Experimentation and three-dimensional
numerical solutions of the equations of motion for the basic flow have verified this assumption; this
property is also to be found in the low angle-of-attack solutions of the Navier-Stokes equations pre-
sented in [25].

Regarding instability analyses information on three-dimensionality comes principally from exper-
iments and direct numerical simulations on planar and axisymmetric geometries [17, 21]. One- and
quasi two-dimensional linear and nonlinear instability analyses are performed at a particular location
on the surface of the object examined. Homogeneity of space in the case of planar geometries and
axisymmetry of the circular cone permit introduction of a harmonic decomposition of disturbances
in the spanwise or circumferential direction, respectively. As has been mentioned, the dependence of
the basic flow on the streamwise direction is neglected and a harmonic decomposition is introduced
in this direction. The latter assumption is made also in the context of a global analysis based on the
two-dimensional eigenvalue problem. As far as the downstream location is concerned, the arc-length
defined along the generators and measured from the tip of the elliptic cone is the natural choice of
coordinate along which the dependence of the basic flow can be neglected in comparison with that
along the other two spatial directions. This choice is straightforward if the oncoming flow is at zero
angle of attack; at increasingly large nonzero values of the angles of attack and yaw/bank the choice
is less clear since the three-dimensionality of the flowfield is enhanced by nonzero values of the angle
of attack; nevertheless, we adhere to the arc-length as the downstream coordinate in these cases also.
As the case is with the one- and quasi two-dimensional analyses the wall-normal direction defines one
essential spatial direction on which information is required for a global linear analysis. On the other
hand, the definition of the third spatial direction on the elliptic cone is not unique.

(a) The elliptic confocal coordinate system

In anticipation of solving a two-dimensional global linear eigenvalue problem, in which on grounds
of feasibility the dependence of the flow on the third direction is neglected, the natural choice of
coordinate system to express the basic flow quantities and solve the eigenproblem is the confocal
elliptic coordinate system O&n, schematically depicted in figure 1. A conformal transformation in the
complex plane, discussed in detail in appendix A, relates the cartesian coordinate system Ozy to O&n
through

x = ccosh&cosn (3.1)
y = csinh{sing (3.2)

in two spatial dimensions, while the extension to three dimensions is trivial and leads to the well-
known elliptic cylindrical coordinate system The inverse transformation is given by

E= % Re{cosh (z + iy)}, (3.3)

n= % Im{cosh™ (z + iy)}. (3.4)
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Inviscid global instability of flow on an elliptic cone 15

The coordinate lines of this orthogonal system are confocal ellipses ¢ = cnst. and hyperbolae
1 = cnst. with common foci at © = +¢ = +v/a? — b%. The semiaxes themselves are

= ccosh¢, (3.5)
b = csinh¢, (3.6)

which ensures satisfaction of the equation of the ellipse in cartesian coordinates. The semi-axes a
and b and the focal distance c of the ellipse are used to define &, = cnst., the ellipse describing the
wall of the elliptic cone at a particular location zg, through

1
£w:—lna+bzlna+b.

2 a-b» c

(3.7)

Chain rule for partial differentiation is used to relate derivatives in the two coordinate systems,

( of |0¢ ) _ g ( of |0z ) _ (3.8)

of/on of /0y
The inverse Jacobian matrix of the transformation is
71— € ([ sinh§ cosn —cosh§ sinn \ _ i J1 —Ja (3.9)
~ K2 \ cosh¢ siny  sinhécosn )~ B2\ g2 J1 )’ )

where h is the metric of the transformation

h = h¢ = hy = c¢\/sinh? € + sin? 7). (3.10)

The gradient and Laplacian operators, appearing in the two-dimensional eigenvalue problems, have
the forms

grad f = (f¢/h fn/h) (3.11)

and
V= f&&/hQ + fnn/h2 (3.12)

respectively.

Desirable properties of this coordinate system are its strong clustering of points in the neighbourhood
of the wall, itself being a coordinate line, such that no numerically introduced discontinuities are to be
expected. Indeed it has been known for some time [14] that when using high-order numerical methods
for the approximation of a differential operator in the neighbourhood of a solid boundary care has to
be taken that the boundary itself is approximated with the same degree of accuracy. Furthermore, this
natural clustering at the wall is expected to be advantageous in resolving the boundary layer and its
instabilities. In the far-field, the exponential decay of the density of the coordinate lines £ = cnst. as
& — oo permits taking the outflow boundary of the computational domain £, well away from viscous
regions and the only limitation in the choice of a value for &, is expected to be the shock location.

The physical implication of an instability analysis based on the elliptic confocal coordinate system
is that the three-dimensionality of the elliptic cone is locally neglected in the following sense. The
basic flow is calculated by a three-dimensional steady scheme and may be extracted on an arbitrary
two-dimensional grid. Using the elliptic confocal coordinate system one selects a particular location
zo along the cone axis and extracts the three velocity components, density and pressure on a plane
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16 V. Theofilis

normal to the axis Oz. The inverse transformation (3.3-3.4) permits describing the non-conservative
variables on the O&n coordinate system, while the discussion of this paragraph forms the basis for
transforming any of the forms of the two-dimensional eigenvalue problem discussed in the previous
section into the elliptic confocal coordinate system and solving it.

In so doing, one approximates the elliptic cone surface locally by an elliptic cylinder. Potentially
unstable global eigenmodes to be delivered by the analysis will be characterised by a periodicity
length L, = 27 /f corresponding to the most unstable wavenumber parameter 5. A comparison of
the wavelength of the most unstable global eigenmode with the length scale locally characterising the
departure of the actual elliptic cone from the assumed elliptic cylinder, Az. Essential for a meaningful
global instability analysis from a physical point of view is the satisfaction of the condition

L, < Az (3.13)

which implies that the neglected three-dimensionality of the elliptic cone does not affect locally the
development of an unstable z—wise periodic global eigenmode.

On account of the underlying analytic conformal transformation, the elliptic confocal coordinate
system is the simplest and most elegant means of performing a global instability analysis on the elliptic
cone. However, this is not the only possible approach and in what follows we discuss briefly the building
blocks of two different methodologies towards arriving at three-dimensional global instability analysis
equations. In following this approach we intend to provide alternative three-dimensional coordinate
systems, the coordinate lines of which are by construction mutually orthogonal. This is the case for
the three-dimensional extension of the elliptic confocal coordinate system, namely the elliptic cylinder,
but not for the elliptic cone. The following two paragraphs sketch two alternative approaches to arrive
at consistent means of neglecting the third spatial direction, while retaining the three-dimensionality
of the elliptic cone surface. The resulting two-dimensional surfaces are expected to be different than
the plane defined by the cone base on which the elliptic confocal coordinate system has been discussed.
As a consequence performance of global instability analyses on such three-dimensional surfaces would
require an extension of the approach based on (2.1). Such an extension will be considered in future
efforts. Ultimately, comparisons of the global instability analysis results on the two different two-
dimensional planes could embed the known physical mechanisms into a 2 framework and shed light
at potentially existing additional physical mechanisms that cannot be captured by the simple one-
dimensional linear theory.

(b) A body-fitted three-dimensional coordinate system

Tensor analysis may be used to arrive at a general three-dimensional body-fitted system to describe
the equations of motion. In this case a transformation between a given cartesian frame of reference
O(z,y,z)T and an orthogonal body-fitted coordinate system O(¢,7,0)T, in which ¢ denotes the co-
ordinate from the elliptic cone tip along the cone surface,  denotes the wall-normal and @ the angle
between the cone axis of symmetry and the line O&, can be constructed by simple trigonometric
relationships. On the plane z = zg = 0, schematically presented in figure 2,

rg — 0, (3.14)
_ — (£ _ . e ; _n

Yo =y1 +y2 = (£ — A)sinf + oy (¢ —ntanf)sinf + pr (3.15)

(3.16)

where the elliptic cone semiangle 6 is in general a function of the angle ¢, shown in figure 3. The
equation of the ellipse, expressed in terms of its eccentricity ¢ = ¢/a and the parameter x = b?/a, a
and b being the semiaxes of the ellipse, is
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Inviscid global instability of flow on an elliptic cone 17

K

= 1
1+ e€cos¢ (3.17)

R(¢)

In three-dimensional space, ¢,0 and R are functions of the angle ¢, as shown in figure 4. Simple
trigonometrical relations permit solving for the independent variable

l#] . (3.18)

0(¢) = arctan L0+ ecosg)

Combining (3.17) and (3.18) it follows that

K 2
£(¢) = \/L2 + (m) ; (3.19)

such that the body-fitted coordinate system O(¢,7,0)7T is related with the cartesian system Ozyz
through

z = <[§ —ntan 9] sinf + conm) cos ¢, (3.20)
Yy = <[§ —ntan 9] sinf + conﬁ) sin ¢, (3.21)
z = (€& —ntan®)cosé. (3.22)

The objective now becomes to express the three-dimensional compressible continuity, Navier-Stokes
and energy equations in the body-fitted coordinate system. This is currently pursued, however at lower
priority compared with the current main focus, which is to obtain two-dimensional eigenvalue problem
results on the two-dimensional elliptic confocal coordinate system introduced in the previous section.

(¢) Differential geometry concepts for the derivation of the instability equations

In this section we follow an alternative little known methodology in order to arrive at the desired
two-dimensional global stability equations as the limit of those expressed in a three-dimensional body-
fitted coordinate system. Ultimately, the present approach and that of the previous section should yield
identical results. In view of the non-trivial nature of the systems of equations in question, following
two alternative methodologies is useful in cross-verifying the results of the respective derivations.

An essential property of the geometry in question, introduced by the departure of the elliptic cone
from axisymmetry, is the non-orthogonality of the azimuthal direction and the plane defined by the arc-
length and wall-normal directions. This is illustrated by the introduction of a body-fitted coordinate
systemT defined by the arc-length coordinate s, the wall-normal coordinate n and a coordinate § normal
to the plane Osn. This system is shown in the upper part of figure 5; also shown is the azimuthal
coordinate ¢, which is normal to the Oyz plane. Along the (s, n,0) directions we introduce unit vectors
€5, €, €9 and e4. The Cartesian frame of reference (z,y, 2) on which the basic flow calculations have
been performed in [25] and the newly introduced frames of reference are related by

z = cos ¢(sa + nbL), (3.23)
y = sin¢(sb + nal), (3.24)
z = sL — nab. (3.25)

t in general different than that of the previous section - different notation underlines this point
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18 V. Theofilis

The unit vectors along the (s,n,#) directions are

1 a cos ¢
€e; = ﬁ ( bSlIIJl(ﬁ ) , (326)
en— L ( Tasing ) (3.27)
n \/N _ab ?
1 a[b22+ L2; sin ¢
oo e, ) o

where
S = a*cos® ¢ 4 b?sin? ¢ + L2,
N = LV cos® ¢ + L%a® sin? ¢ + a?b?,
0 = a*(b* + L?)?sin? ¢ + b%(a® + L?)? cos® ¢ + L2 (b* — a?)? sin? $cos? ¢,

while the unit vector in the O¢ direction is

1 asin ¢
ey = —bcos¢ | . (3.29)
\/a2 sin? ¢ + b2 cos? ¢ 0

In the limit case a = b = r, which corresponds to a cone with circular base of radius r, ¢ = 6
and es = ey. However, if a # b the third component of ey is nonzero and ey defines the tangent
vector along the 27 —periodic line L[b? — a?]sin ¢ cos ¢. Also, ey is by construction tangent to the line
s = cnst. on which the elliptic cone is shown to terminate in the lower left part of figure 5 and to
the wall-normal direction. In this case ey - €9 # 0, a fact which has far-reaching consequences for the
global instability analysis in terms of the definition of the plane on which the global analysis will be
performed and hence we elaborate on the coordinate systems defined further.

The two coordinate systems (e, ey, e4) and (es, €,, €y) have the following properties. Both reference
systems have in common a local origin which is placed as the same distance from the cone tip,
a property which may be interesting in the subsequent analysis if we wish to describe the three-
dimensionality of the flow in terms of its impact on local instability properties. Specifically, local
linear analyses could be performed by monitoring the flow at equidistant locations from the tip of
the elliptic cone and resolving the wall-normal direction and the results could be compared with
those of global analyses in which the s = ¢nst. line defines one resolved spatial direction. The second
common property of the two coordinate systems is that they encompass one direction normal to the
elliptic cone surface; this is an essential characteristic independently of the type of global or local
instability analysis to be performed. The discriminating characteristic of the two coordinate systems
is that (e,, ey, e4) is non-orthogonal by contrast to (es,e,,es) which is orthonormal. While the last
characteristic is appealing in the derivation of the global instability equations on the On# plane, use of
the (e, en,ey) coordinate system could be advantageous in facilitating comparisons with experiment
in which a light sheet is used to visualise instabilities on the On¢ plane [12].

A third coordinate system may also be introduced along the following lines. The arc-length direction
Os and its unit vector e; as well as the local wall-normal direction On and its unit vector e, are
introduced as before. The third coordinate direction is defined in this coordinate system numerically
by reference to the basic flow data of Theofilis [25]. The three-dimensional flowfields could be post-
processed to recover the magnitude and direction of the flow perpendicular to the Ons plane, which
we loosely refer to as the crossflow direction. The third coordinate could then be defined by the
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Inviscid global instability of flow on an elliptic cone 19

requirement
crossflow magnitude = cnst. (3.30)

This introduces a different direction O¥, termed the crossflow direction, along which a tangent
vector ey could be defined numerically. The global linear analysis can the be performed on any of the
three coordinate systems (es, en,ey), (€5, €n,€) or (e, ey, ey) by resolving, respectively, the planes
Ong, Ond or Ond. The advantage of performing the analysis on the Ond plane would be that the
effects of wall-normal and crossflow direction on flow instability would be separated in the the global
analysis.

The benefit of choosing any of the three coordinate systems to perform the global instability calcu-
lations could be assessed by reference to experiment. However, the form of the equations of motion is
obviously affected by choosing different coordinate systems and the nontrivial nature of the derivations
of the three-dimensional compressible equations of motion in arbitrary coordinate systems warrants a
decision at this stage on the reference system to be used in the subsequent analysis. As an example,
we use Appendix C to demonstrate derivation of the gradient operator using a little-known methodol-
ogy of differential geometry[11, 3], which delivers transformation of equations in arbitrary coordinate
systems including those defined numerically, such as the (eg, e,, €y) frame of reference, without having
to resort to tensor analysis. The result in the (ey, €,,€y) coordinate system is

10f , (1 wy  wBqdf , 10f,
=4 =2 0 ey - D 31
i ws 05" + [wg wg’wg wﬁwg] 00 + wi on” (3:31)

with the shorthand notation explained in Appendix C. The differential geometry concepts are useful
in providing alternative ways of deriving the three-dimensional compressible Navier-Stokes equations in
general three-dimensional frames of reference, the only requirement for which is that they be orthogonal
at each point in space. In view of the relative simplicity of the three-dimensional shape of an elliptic
cone surface, which will form the basis for the derivation of an body-fitted frame of reference, we
turn to deriving the equations of motion using classic tensor analysis and will return to differential
geometry in order to cross-validate the results of the anticipated extensive calculations.
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20 V. Theofilis

4. The numerical solution of the generalised Rayleigh equation

In view of the transformation (3.1-3.2) the generalised Rayleigh equation (2.28) becomes on the
elliptic confocal coordinate system

.2 .2 — —
N s Jitaa [(Pe _Pe\ _ 2Pwe
_ h2p2 Ji [(_ _re
bee +Pm — WA P+ 55 55 " 5 ) " Gu—w) | P
—i—j% + 73 [(p_n A 2ﬁwn ]
L\ P b
5 (B — w)?
+ lp(ﬁ — ]ﬁ = 0. (4.1)
However, j7 + j5 = h?, such that one finally has to solve
- _ - - — (@ 2
Pe _ Pe 2/3"1}{ N Py Py 2/6“]7) A 14 (le - w) A
M+[( _)—_7114— —_— = —_7]7-}-7_}):0. 4.2
w o p) Bo-w)l [\ B/ (Bo—w)lT” 1D (2

where the linear operator M = O¢g¢ + 0y — h?$2. In a manner analogous with classic one-dimensional
linear theory, (4.2) may be solved either iteratively or by direct means. In view of the lack of any prior
physical insight into global linear disturbances in the application at hand, a direct method is preferable
on account of the access to the full eigenvalue spectrum that it provides.

Either the temporal or the spatial form of the eigenvalue problem may be solved at the same level
of numerical effort using a direct method since, in both cases, a cubic eigenvalue problem must be
solved. In its temporal form, this is

Ty pee + To Py + T3 Pe + Tapy + Ts5p = w (T Peg + T Py + Ty D¢ + To Py + Tr0 D)
+ T p
+ w3 Tlgﬁ (43)

while the spatial generalised Rayleigh equation on the elliptic confocal coordinate system is

S1Pee + SoPyy + S3Pe + Sapy + S5 D = B (S6 Pee + S7Dyy + Ss De + So Py + S10D)
+ ﬁQ S p
+ 8% S12p (4.4)

The coefficients appearing in (4.3-4.4) are given in appendix B.

(a) Spectral collocation for the inviscid instability problem

Either of the systems (4.3) or (4.4) may be discretised by spectral collocation means. The natural
choices for basis functions are a member of the Jacobi family of polynomials; here Chebyshev polyno-
mials have been chosen to discretise the £— spatial direction [4]. The natural boundary of the elliptic
cone surface dictates the need for a mapping of the standard Chebyshev domain x; = cos jm/N¢ onto
¢ through

5]':%373'(511)_500)"‘%(&0_500)1 j:O,---,Ng (4-5)
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where &, is given by (3.7) and £ represents the far-field location along the ¢ coordinate where the
domain is truncated. Chain rule is used to account for the metric of the transformation between z; and
&; analytically and arrive at the expression for the collocation derivative matrices, D¢, for the first and
Dy¢e for the second derivative in the {—direction in terms of their standard Chebyshev counterparts

D, and D2,

2
De = mpc, (4.6)

T .7

A Fourier expansion is used to discretise the 2r—periodic spatial direction 7. Here no mapping is
necessary and one may use the standard Fourier points,

Dg¢e =

nj =2jm [Ny, j=0,---,N, -1 (4.8)
and the the first two associated Fourier collocation derivative matrices D; and D; to perform

differentiation along 7,

D, =Dy, (4.9)
Dy = D} (4.10)

The generalised Rayleigh equation may now be discretised in elliptic confocal coordinate space to
arrive at its temporal

{T1D§§+T2Dnn+T3D§+T4Dn —I—T5I}]3:w{T(;'Dgg+T7Dnn+T8D£+T9Dn+T10I}
+ W T Ip
+ W Tia Ip (4.11)

or spatial form

{51D§§+52Dnn+53’D§+S4’Dn+S5I}ﬁ:ﬂ{56D£§+S7Dnn-I—Sg'Df-l—Sg'Dn-l-Sl()I}
+ B2 S Ip
+ B2 S Ip (4.12)

which may be readily collocated.

However, before either equation can be solved, the issue of critical layer in two spatial dimensions
arises, which must be resolved. In the next chapter we provide one solution based on the idea of
complex collocation calculation grids. This is extending spectral collocation grids of the type (4.5)
and (4.8) into complex space, where the calculations are performed; the physical quantities of interest
are extracted as the real part of the results obtained. For simplicity of the demonstration and in view
of the abundance of comparison data existing we adhere to the classic one-dimensional compressible
linear stability eigenvalue problem.

Contract No. F61775-00-WE069



22 V. Theofilis
5. On complex spectral collocation grids for inviscid instability analysis

In anticipation of an inviscid global analysis to follow, we discuss here the development of a new
methodology based on spectral collocation methods to address this issue. While (real-grid) spectral
methods have long been applied to the solution of the basic flow problem [20] their application to the
resultant inviscid instability analysis has proved prohibitive due to the existence of the critical layers.
Two solutions exist in order to regain spectral accuracy. The first is to use a standard Chebyshev
Gauss-Lobatto (real) grid [4] but Taylor-expand the basic flow around the critical layer. The second,
followed herein, is to extend the Zaat-Mack technique for the integration of the instability equations
in the complex plane and introduce complex collocation grids, forcing a spectral method to integrate
the equations on a complex contour suitably adapted to avoid the critical layer. Use of this second
approach was first suggested by Boyd and Christidis [2] and further investigated by Boyd [1] in the
context of atmospheric and hydrodynamic instability calculations. These works were extended by Gill
and Sneddon [10], who gave an analytic formula for optimizing one family of complex (quadratic)
maps.

Here we validate the key element of an inviscid global linear instability analysis, namely complex
spectral collocation calculation grids, by introducing a novel spectral scheme for the solution of the one-
dimensional incompressible inviscid linear eigenvalue problem in planar geometries and that pertaining
to supersonic flow in both planar and curved geometries. The first problem is governed by the classic
Rayleigh equation while compressibility and curvature are discussed using the equations of Duck [8]
or their planar limits. We employ complex spectral collocation grid techniques first to the solution
of the basic flow problem and subsequently to both the incompressible and the compressible inviscid
linear eigenvalue problems. The accuracy and the efficiency of the proposed algorithms are assessed in
comprehensive comparisons of results obtained using our spectral approach against the work of Mack
[17, 18] and the finite—difference algorithm of Duck [8].

(a) Linear local inviscid instability theoretical background

With reference to the conical geometry presented by [9], introduction of the local theory Ansatz into
the full Navier-Stokes, energy and continuity equations results in a sixth-order system for the linear
disturbance amplitude functions; further, if one takes the O(e < 1)-terms with the leading order in
Reynolds number (i.e., ignoring viscous terms), the sixth-order system can be reduced to

C _ WOU(P o iﬁ n2<2 _ 2 _ 2
on + 1+)\C2+C77(p Wo—B  yM2(Wy — B) {TO ll+@2(1+AC2+CU)2] M5, (Wo — B) }a
(5.1)
i02(Wo — B) 2 = — P (5.2)

T() - _")’MOQO,

in the independent variable 1, where Wy and T are respectively the single basic flow velocity com-
ponent and basic flow temperature profiles, A = 0 corresponds to a cylinder and A # 0 generates
families of conical geometries, ( is the scaled downstream coordinate, ¢ = 71 /¢ and p are the scaled
disturbance velocity component and disturbance pressure amplitude functions, My, is the free-stream
Mach number, v is the ratio of specific heats, n # 0 corresponds to non-axisymmetric disturbances,
a=a(, w=w( and § = ¢ (¢ complex and « real) for temporal instability calculations while 8 = w/«
(a complex and w real) for spatial instability calculations and i = v/—1. The boundary conditions are

[9]

o=p,=0 on n=0, (5.3)
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o~ % {Kn+1(77) + K\n71|(ﬁ)} as 1 — 00, (5.4)

-~ <PooMgoia7(1 — B)Kn (1)

11— M2 -
where /) = +afl — M2 (1 — B)4]2(1/¢ + X + 1), the sign of which is chosen such that the real part
of the argument is positive in order for boundedness as n — oo to be ensured, ¢, is a constant and
K, (z1) denotes the modified Bessel function of order n and argument z;.

To achieve the planar limits, we firstly set A = 0 in (5.1-5.2) and subsequently apply the limit { — 0,
corresponding to flow in planar geometries. This yields

P 7 — 00, (5.5)

on = 725 = e [T~ ME 0% - 7], (5.6)
i0?(Woy — 5)% - _711330' (5.7)
The corresponding boundary conditions are
p=p;=0 at n=0, (5.8)
and
o ~ oo exp[—ay/1 — (1 — f)2MZ, 1), (5.9)

5o o7 ME (1= ) exp[—ayT — (1~ B)ZME, 1]
VI pPL
Combining equations (5.6-5.7) and taking the limits M, — 0 and Ty — cnst., results in

(Wo = B) [om — o] — Wopmp =0, (5.11)

which is the classic Rayleigh equation governing inviscid linear instability of incompressible boundary—
layer flow in planar geometries.

as 1 — oo. (5.10)

(b) Numerical Methods

The physical range of the type of boundary layer being considered in what follows extends from
zero at the solid boundary to suitably chosen far-field positions. This necessitates the use of mapping
transformations between this range and the domain upon which the Chebyshev spectral collocation
points are defined. The standard (real) Gauss-Lobatto collocation points

jm ,
= — =0,...N 5.12
"I"J CoS Na (.7 Oa ’ )a ( )

form the basis of all complex grids constructed in the sequel. The first of the complex grids employed
(and the most straightforward) is based on transforming [—1, 1] to a parabolic contour in the complex
domain [1]. There are two ways to construct a complex grid which passes from the point n = 0 to
7] = Tmaz, the location on the real axis where the calculation domain is truncated.

One approach is to apply first the complex quadratic transformation [1]

yj = +1i61(zF — 1), i=+v-1, (5.13)
taking the parabola that cuts the real axis at y = —1 and y = 1. Here §; is a parameter whose effect
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on the resultant solutions has been discussed by Theofilis et al. [13]. The physical domain is then
mapped onto the computational domain using the following algebraic transformation [23]

1—y;
=9
U 1+s+ ” )
where s = 2l /nmax and [ is a stretching parameter. The grid defined by (5.14) is parabolic and avoids
the critical point/layer by passing below it.
Conversely, the interval [—1,1] may be transformed to the computational interval [0, Ymqz] (where
Ymaz = Mmaz) Using the algebraic transformation

(5.14)

1-— ,Tj
i=l— 5.15
Yi 1+s+ux; ( )
and then maps it onto the complex domain, passing through the real points n = 0,1 = Nqaz, using
. Yj — Nmaz)™
my= vy i (- me)™ ] (5.16)
Nmazx

where m is an integer with m > 2 and J; is a parameter, both of which determine the characteristics of
the integration path; as m increases (assuming that d2 < 0 and remains constant) the maximum depth
of the complex integration path increases and its minimum shifts towards the Re(n) = 0 axis, thus
enabling the handling of critical points/layers which lie close to n = 0. This is useful in calculations
of inviscid instability of incompressible wall-bounded flows. On the other hand, by changing the sign
of d9, one can integrate above or below the real axis, for §o > 0 or o < 0, respectively. Further,
by increasing the absolute value of d2 one can increase the maximum depth/height of the complex
integration path. Note, the real parts of the complex grid points (5.14) and (5.16) constructed using
these alternate approaches are mot identical. In other words, the real grid generated by setting §; = 0
is not the same as the one obtained for 6o = 0.

The second complex grid considered is dependent on the availability of an estimate of the critical
layer position. If such an estimate exists, then the grid can be deformed locally into the complex plane
using an exponential complex mapping such as that proposed by Boyd [1]

y; = xj +1id3 e (@i —w0)*/cg (5.17)

where 03, g, zo9 are parameters. This mapping, combined with the algebraic transformation (5.14),
allows for a short detour around the critical layer while hugging the real axis for the rest of the
interval. Alternatively, the algebraic mapping (5.15) combined with the transformation

nj =y; +idsyje ¥, (5.18)

could be used. Note, this complex grid may result in serious convergence problems in the Chebyshev
polynomials expansion of the eigenfunctions [1]. As in the case of real grid calculations, the chain rule is
used to derive the modified collocation derivative matrices [4] which are employed in the computations.

(¢) Instability results in planar and azisymmetric geometries

The classic Rayleigh equation is considered first. This, despite its apparent simplicity, provides a
good test for the proposed algorithm due to the fact that for incompressible boundary—layer flows the
critical layer is typically located very close to the wall. The complex grids which we employ need to
coincide with the real point on the fixed boundary, where the boundary conditions are applied. Thus
the computational grid must be deviated around the critical layer at a very short distance away from
the boundary. In what follows we use two sets of complex mappings resulting from a combination of
(5.15) with either (5.16) or (5.18), both of which have the ability to divert the complex grid over short
distances.
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The first test case considered is the Blasius boundary layer [17] which has a critical layer location
close to the solid wall. The basic flow profile Wy(n) was obtained by solving the Blasius equation on
a real grid or directly on a complex grid. If the former case, a Taylor expansion was used to calculate
the values of W(n) on the complex nodes. The Rayleigh equation was discretised on the complex
grid resulting from the combination of (5.15) and (5.16) or (5.15) and (5.18), using the appropriate
collocation derivative matrices. The discrete eigenvalue problem was thus formulated as a generalized
eigenvalue problem which was solved using the QZ algorithm. Mack [17] computed eigenvalues with an
indented integration contour. For o = 0.179 Mack quotes the eigenvalue w = 0.05750554 —i0.00657109
while the present spectral method yields w = 0.05750493 —i0.00657192 when the exponential mapping
with é; = —3.0 is employed, and w = 0.05750493 — i0.00657191 when the polynomial mapping with
d9 = —0.15,m = 5 is used. For both spectral method calculations 100 collocation points were used
with e = 1 = 50.

The second test case is the flat-plate boundary layer in compressible flow. It is well-known that as
the Mach number increases the critical layer moves away from the wall outwards towards the edge of
the boundary layer [17]. Thus for compressible calculations it is easier to determine a suitable complex
grid which avoids the large gradient problems in the critical layer. By contrast to the Blasius boundary
layer, where an inviscid linear instability analysis is of largely academic interest, linear instability of
(viscous) compressible flow on both flat-plate and curved geometries can be well approximated by an
inviscid analysis. Mode I and II inviscid linear instability calculations were performed for supersonic
boundary-layer flow over a flat plate, choosing the relevant parameters from the related work of Duck
[8] who monitored the planar limit of his equations against the calculations of Mack [18]. Basic flow
calculations were performed on the complex collocation points defined by the combination of (5.15) and
(5.16) with m = 5. The subsequent instability analysis was pursued in a temporal framework in order
for comparisons with the aforementioned works to be possible. The analysis is based on equations (5.6-
5.7) together with boundary conditions (5.8-5.10). First, we considered the incompressible planar limit
taking M = 10~* and the mapping parameters of the incompressible calculations, N = 100, ez =
[ = 50,62 = 1.5. The calculated eigenvalue at a = 0.179 is w = ac = 0.05750493 — 10.00657192,
which agrees with the incompressible result in all decimal places. Next, supersonic inviscid linear
instability calculations were performed at M, = 3.8 for flow over an insulated flat-plate. We chose for
all subsequent calculations 7,,,; = I = 25 and present in Table 1 the combined effect of grid resolution
and variation of the single remaining complex grid parameter d2 on the mode II eigenvalue obtained
at a = 0.365. In these results it may be seen that a real grid is inadequate to cope with this instability
problem. The same conclusion may be drawn for calculations performed with do > 0.15 at modest
resolutions, while calculations at d2 = 0.05 deliver the most accurate results at low resolutions. Finally,
the results of Table 1 as well as others not shown here show that grid refinement in combination with
a small positive value of d9, corresponding to a short detour into the complex plane, can deliver the
converged eigenvalue. Taking the optimal parameters resulting from the present study, N = 64 and
d9 = 0.05, we present in Figure 6 the dependence of the eigenvalue ¢ on the wavenumber parameter
a for both mode I and mode II calculations. Excellent agreement with the superimposed relevant
inviscid instability analysis results of Duck[8] may be seen. At maximum growth rate conditions the
viscous analysis of Mack [18] predicts a mode II instability wave that is about 10% more stable than
the inviscid result of Duck|[8] reproduced herein by the complex—grid analysis.

The final validation calculation addressed solution of the linear instability equations for supersonic
flow past axisymmetric bodies. The temporal linear instability analysis results of [9] are used for
comparisons with our predictions. Figure 7 displays results obtained with the Runge-Kutta technique
of Duck and Shaw [9] and our algorithm for the modes I and II of instability, for the case of a cone
(A =1), at ¢ = 0.05, M, = 3.8 and azimuthal wavenumbers, n, as shown. The complex grid used
is defined as a combination of (5.13) and (5.14) with N = 64,6; = —0.05,%ax = | = 25. The
graphical agreement of the results is very satisfactory. Next, we perform spatial calculations for the
same physical parameters. We use a combination of (5.13) and (5.14) and an iterative algorithm at
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variable resolutions to recover the leading eigenvalue. The dependence of the eigenvalues determined
by the spectral collocation scheme on the complex grid mapping parameters is shown in Table 2.
The bracket of §; values in which we were able to obtain accurate results is rather narrow; erroneous
results were obtained when the mapping parameter exceeds a threshold value. For this set of physical
parameters the threshold was found to be §; =~ —0.05. However, the principal result of this section
is that the complex spectral collocation technique proposed is capable of recovering inviscid linear
local instability analysis results and thus becomes one viable candidate to address the corresponding
two-dimensional eigenvalue problem. The results of this effort will be presented in due course.

Contract No. F61775-00-WE069



Inviscid global instability of flow on an elliptic cone 27
6. Results

(a) Validation runs
(1) POISSON EQUATION ON THE ELLIPTIC CONFOCAL COORDINATE SYSTEM

Our first concern has been with the demonstration of the tools employed for the numerical solution
of the generalised compressible Rayleigh equation on the elliptic confocal coordinate system. At the
heart of this problem lies the ability to solve the appropriate Poisson equation

(Oce + Oy + h2p(E,m)| £(&,m) = a(&m), (6.1)

with h = h(&,n) defined in (3.10) and p(€,7n), ¢(£,n) being infinitely differentiable functions on the
elliptic confocal coordinate system O¢r. Boundary conditions to close the system, which are relevant
to the subsequent instability analysis, are homogeneous Dirichlet at the farfield and either Dirichlet
or Neumann at the wall of the ellipse.

Several examples have been devised and solved, in order to validate (%) the coupled two-dimensional
spectral collocation discretisation used, (i7) the imposed boundary conditions and (4i7) the associated
problem of symmetries expected (as opposed to imposed) in the solution. In all cases

q(ém) =1 (6.2)
has been considered, while three cases have been monitored for p(&,7),
Case H: p(&,n) =1, (6.3)
and
sinh € sin? 2
Case S : p(&,n) = ¢ 1 T (6.4)
[cs /sinh? ¢ 4 sin? n]
resulting in symmetric solutions about both axes of the ellipse, and
inh £ sin 2
Case A : p(&,n) = sinh & sin 2y (6.5)

[C\/SinhQ £ + sin? 77] .

which breaks this symmetry in the solution, while it retains generalised symmetry about the centre
of the integration domain.

Natural periodic boundary conditions are imposed by the Fourier expansion along the 7 coordinate
direction, while along the ¢ coordinate either Dirichlet

(€ =8w,m) =0, f(§=Ex,n) =0 (6.6)

or Neumann

fel€ =&wim) =0, f(§=¢,m) =0 (6.7)

boundary conditions are imposed, &, denoting the coordinate line (3.7) which defines the ellipse
surface and &, being the location along the £ coordinate where the integration domain is truncated.

(1) NUMERICAL SOLUTIONS

A single configuration of an aspect ratio 4 elliptic cone with unit major semiaxis has been considered.
A cut plane parallel to the cone base at a distance zp = 0.5 from the cone base results in an ellipse
with geometric parameters
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a=0.5, b=0.125, &, =~ 0.255, (6.8)

while ¢,, = 1.5 has been taken to truncate the integration domain. Six problems are then solved,
namely H, S and A, employing Dirichlet or Neumann boundary conditions at the wall. The spectral
collocation discretisation scheme of § 4 is used and the convergence history of the results for the wall
value f(z = a,y = 0) = f(£ = &u,n = 0), obtained from numerical solution of the Neumann problems,
is presented in table 3 to within six significant digits, while the convergence history of the numerical
solution of problems S and A is presented in figure 10. The spatial distribution of f(z,y) for both
Dirichlet and Neumann boundary data can be found in figures 11-13.

A key conclusion based on these results is that in all cases studied exponential convergence of the
solutions of (6.1) has been obtained. The symmetries of the solutions are recovered, rather than being
imposed, by the numerical approach taken. Furthermore, when the function sought has a simple,
essentially one-dimensional (in £) structure, as the case is in problem H, a small number of collocation
points suffices to solve (6.1) and further increases in resolution are unnecessary. This result is attributed
to the convergence properties of the Fourier expansion in 7 and underlines the significance of the
choice of the natural elliptic confocal coordinate system for the problem at hand. The low resolution
requirements in the 7 direction in this class of problems, effectively suggesting that the available
computing power can be almost exclusively devoted to resolution of the £ spatial direction, is significant
in terms of the ability of the two-dimensional eigenvalue problem to recover results of classic one-
dimensional linear theory; in this case the instability mode can be described with a small number of
Fourier modes accounting for resolution of the geometry in the lateral () direction, while its principal
variation is along the wall-normal ¢ direction.

As the structure of the sought function becomes increasingly more complicated higher resolution
is necessary compared with that needed for problem H, although in both problems S and A also
exponential convergence has been obtained. However, to the degree that conclusions on the spatial
structure of the sought BiGlobal instability modes on the elliptic cone can be drawn upon evidence
provided by the numerical solutions of problems A and S, a resolution issue for the inviscid compressible
eigenvalue problem may arise if accuracy of the eigenvalue problem results beyond three to four
significant digits is necessary, for instance in the case of near-neutral modes. In such cases a combination
of the numerical methods of § 4 and § 5 may be necessary.

(b) Instability analysis results on the elliptic confocal coordinate system
(1) EXTRACTION AND MAPPING OF BASIC FLOW DATA ONTO THE O¢n PLANE

The numerical solution of the compressible generalised Rayleigh equation (2.28) requires basic state
results on a plane z = zy, parallel to the elliptic cone base, as schematically depicted on figure 8.
Simple trigonometric formulae relate the semiaxes a,b and focal distance c¢ of the ellipse on the cut
plane with the respective quantities at the base of the elliptic cone, A, B, C, through

a b c 20
A B C ZzZ

For a given elliptic cone geometry and distance zg of the cut plane from the tip of the cone, the
quantities a,b and ¢ can be calculated in this manner. In turn, with known semiaxes of the ellipse on
the cut plane (3.1-3.2) relate the cartesian system Ozyz of the basic flow calculations (Theofilis [25])
with the elliptic confocal system O&n on which the instability analysis is to be performed.

Basic flow data are transferred from the steady three-dimensional unstructured-grid results using
second-order accurate interpolation onto an optimal 'nearest-neighbour’ two-dimensional tessellation of
the Ozy plane, the latter generated by the interpolation software which supports the 3D-visualisation
package used. Since the basic flow results have been obtained using a second-order accurate finite-
volume method, use of a higher order interpolation procedure is not justified and one has to rely on

(6.9)
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high resolution in order to improve the quality of the basic state. A second bivariate interpolation
procedure generates a unique Thiessen triangulation and calculates basic flow derivatives on the new
unstructured grid on the Ozy plane. The result is then used to perform a third and final, also second-
order accurate, interpolation, which delivers the necessary basic flow streamwise velocity component,
density and pressure on the elliptic confocal coordinate system O&n. Derivatives of these quantities
with respect to £ and 7n are then calculated using the collocation derivative matrices.

Clearly, this sequence of interpolations carries the potential of cumulative error being introduced,
so alternative approaches pointing to future research directions are briefly discussed here. Use of the
same (z—independent) elliptic confocal coordinate system to obtain basic flow data and perform the
instability analysis would eliminate the error introduced by interpolations. However, the implication
would be that flow on an elliptic cylinder, rather than on an elliptic cone, would be monitored by
such an approach and information on flow three-dimensionality, currently obtained through successive
instability analyses at different zy locations, would be lost. As has been discussed in § 3, a three-
dimensional grid constructed of elliptic confocal planes normal to the cone axis at different zy locations
is not an orthonormal frame of reference; in other words, on account of the three-dimensionality of the
elliptic cone geometry it is not possible to construct a three-dimensional orthonormal frame of reference
having the two-dimensional plane Oxy on which the present analyses are performed embedded to it.

Returning to the coordinate system of figure 1, a related issue that must be addressed in this context
is the extent of the domain on which basic flow data are interpolated/retained along the ¢ direction.
Although it is in principle possible to define the cut plane for the instability analysis so that it either
incorporates or avoids the Mach cone (in supersonic/hypersonic flow), this was not done in anticipation
of potential resolution issues in the instability analysis should the first course of action be taken or
the ambiguity of defining an outer boundary in the ¢ direction in the region between the cone surface
itself and the shock location. Consequently, the shock location itself was chosen as the boundary at
which homogeneous Dirichlet boundary conditions were imposed on the disturbance pressure in all
subsequent calculations. At the wall homogeneous Neumann conditions were imposed.

(II) INVISCID EIGENDISTURBANCES ON THE ELLIPTIC CONE

With these considerations in mind, attention has been focussed on three configurations, an aspect
ratio 3 elliptic cone in subsonic viscous (M = 0.5, Re = 10%) flow, an aspect ratio 4 elliptic cone in
supersonic inviscid (M = 4) and an aspect ratio 2 elliptic cone in hypersonic viscous (M = 8, Re = 103)
flow. The subsonic calculations have been performed on a 3D unstructured grid encompassing ~ 2 x 10°
points on the half plane z > 0; the converged (in time) steady results were mirrored with respect to
the plane z = 0, while in the second and third cases flow over the entire cone has been solved. The
subsequent instability analysis is expected to deliver an answer, in the form of sign of the amplification
rate, as to whether the assumptions of symmetry in the case of the subsonic flow and steadiness in both
cases studied are physically realisable. The supersonic/hypersonic calculations have been performed on
unstructured 3D grids encompassing > 2.5 x 108 points. Respectively, the angles of attack o = 20°, 5°
and a = 0° have been considered, while in all cases a zero yaw angle has been taken. Monitoring three
different basic states at several different parameters parameters may make physical interpretation of
the respective results and their relation to one another a rather challenging task. However, the primary
focus of this work has been demonstration of the tools necessary for the analysis from a numerical
point of view; systematic investigations of inviscid BiGlobal instability from a physical point of view
is a task of future research.

The basic states utilised for the analyses at the extreme Mach number conditions are shown graph-
ically in figures 14 and 15 [25]. In line with the assumptions underlying the compressible generalised
Rayleigh equation, only the streamwise basic flow velocity component w was retained in the analyses
(alongside the density and pressure distributions). This assumption is increasingly valid as the Mach
number increases; for example, in the supersonic and hypersonic cases solved, the peak w value is more
than one order of magnitude larger than that of ¥ and several orders of magnitude larger than that of
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the velocity component % along the lateral spatial direction x. Correspondingly, the results obtained
are expected to be increasingly relevant to the three-dimensional physical problem as M increases.
In all cases solved the spatial concept has been followed, in which w is taken to be a real parameter
denoting frequency and the eigenvalue 8 = S, +if; is sought; in a manner analogous with classic linear
theory, Br = Re{8} represents a wavenumber along the homogeneous z spatial direction along which
the disturbance grows or decays if 5; = Im{8} < 0, or > 0, respectively. A final point relevant to all
calculations performed is that the QZ algorithm has been used for the recovery of the full eigenspec-
trum. While this algorithm is highly inefficient and its application may even lead to concealment of
physically relevant modes on account of the modest attainable resolution in comparison with Krylov
subspace iteration methods [26], use of the QZ algorithm was deemed necessary at this stage, since
no prior guiding information on potentially interesting areas of the eigenvalue spectrum is available.
Consequently, on account of the O((N¢Ny,)®) CPU time scaling of the QZ algorithm, only modestly
high resolutions, up to N¢g x N; = 40 x 40 have been used.

Figure 16 presents the spatial eigenspectrum obtained at M = 0.5,w = 10~2. The calculations are
are inconsistent for most travelling disturbances and only stationary neutral pressure eigenmodes could
be converged at these conditions using up to 30 x 30 collocation points; higher resolution increased
the number of converged stationary disturbances but did not yield converged travelling mode results.
Three stationary neutral eigenmodes are shown in figures 17-19. The most striking feature is the
symmetry about = 0 in all three results, alongside the absence of symmetry in the azimuthal ¢
direction in the first two eigenmodes. The symmetry about z = 0 is a result of that of the basic state,
while the absence of azimuthal symmetry implies that the respective eigenmodes cannot be obtained
by application of the simplified linear analysis concept in which the Ansatz

a=a(&n) +ea(€) exp [i(n + Bz — wi)| (6.10)

replaces (2.1). The present results are the first indication that employing (6.10) inhibits large-
scale non-azimuthally-periodic perturbations, such as those shown in figures 17-18, from revealing
themselves in the eigenvalue spectrum. For such non-azimuthally-periodic disturbances (2.1) must
be used. Focussing on the result of figure 17 one notes that this eigenmode possesses a structure
which is resolved to (qualitatively) the same good degree as those of the model Poisson problems
shown in the earlier section. The pressure eigenfunction and its derivatives are smoothly reduced
to zero at the outer boundary, while most of the activity takes place in the immediate vicinity of
the cone surface. The differential pressure on the windward and leeward sides of the cone is clearly
visible in the results. Further, the n—derivative of this result bears a striking similarity with the
spatial structure of the basic velocity profile. Qualitatively analogous conclusions may be drawn from
the results of figure 18, although in this case the locations of primary vortex separation is clearly
visible in the results, as stagnation points in the disturbance pressure signal. This result points to
the potential of utilising BiGlobal instability analysis to provide an alternative framework for the
well-studies vortex breakdown problem on delta wings, a problem which has received a large amount
of attention using (6.10) but virtually none by application of the more appropriate, in our opinion,
decomposition (2.1). Such a study could be pursues by systematically departing from the classic
circular cone geometry [21] to progress towards a delta wing configuration via a sequence of elliptic
cones at aspect ratios AR € (1,00) . Finally, the result of figure 19 is representative of a class of
pressure eigenmodes also found in the simulations, which may be considered as azimuthally-periodic
and, as such, might be able to be addressed by the simplified concept (6.10). However, although using
(6.10) at a single (&,,n)—location may be orders-of-magnitude less CPU-time-consuming than use
of BiGlobal instability analysis, the simplified linear theory concept must be repeated at a sufficient
number of n—locations along the wall £, in order for a picture of the instability mode along the entire
n—coordinate to be formed, such that BiGlobal analysis may be competitive even for this subclass of
disturbances. All conclusions put forward in the subsonic case must be viewed in the framework of
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the certainly questionable in subsonic flow simplifying assumption « = ¥ = 0. The results obtained
may be viewed as approximations of the BiGlobal eigenmodes which are expected to be obtained
if the full viscous problem is solved. Nevertheless, solution of the latter problem is not expected to
discredit the main result obtained herein, namely the existence of large-scale non-azimuthally periodic
eigendisturbances. As mentioned before, the assumptions of the compressible generalised Rayleigh
equation are increasingly valid as the flow Mach number increases, and we next turn to the supersonic
and hypersonic cases addressed.

Figure 20 presents the spatial eigenspectrum obtained at M = 4.0,w = 1072. By contrast to the
spectrum of figure 16 here both stationary and travelling disturbances could be converged using up to
30 x 30 collocation points. Attention is focussed here on four families of eigenmodes, indicated as A,
B, C and D in figure 20, which at least qualitatively have converged and point to different classes of
eigendisturbances; representative members of these families are respectively presented in figures 21- 24.
In comparison with the respective subsonic modes, all supersonic pressure eigendisturbances recovered
were found to be more compact, extending over a narrower £ —range that their subsonic counterparts,
in line with analogous experience with modes of classic linear theory. Members of family A, one of
which is shown in figure 21, extend only on the windward face of the elliptic cone and may have a
single- (as that shown in fig. 21) or multiple-mode structure along the azimuthal direction. Modes
pertaining to family B, on the other hand, one representative member of which is shown in fig. 22,
are the conceptual leeward analogon of the windward modes A and exhibit are in all other respects
similar characteristics with the A modes, namely a compact structure in the neighbourhood of the
body surface that quickly decays to zero as the free-stream is approached. Modes pertaining to either
of families A or B might be well approximated by classic analysis based on (6.10), provided the
latter is employed only on the appropriate face of the cone. Neutral modes, members of families C
and D, possess a structure extending over the entire integration domain; two examples are shown in
figures 23 and 24. A conclusion with far-reaching implications regarding results of family C is that
BiGlobal instability analysis may have a useful role to play in identifying travelling neutral pressure
eigenmodes which play a central role in the field of computational aeroacoustics (CAA). Further
research to quantify this conjecture, which could form one potential extension of the present work,
is required in this area; if this conjecture is confirmed, orders-of-magnitude computational savings
may be realised in CAA by applying BiGlobal instability analysis instead of the currently almost
exclusively used DNS methodology [5]. Before making final statements in this respect, the influence of
the domain extent on the instability characteristics of the neutral travelling pressure eigenmodes must
be assessed, for example by comparison with DNS studies of the same geometry [29, 30]. One question
that may be posed in this respect is whether the structure of family C BiGlobal eigenmodes is a result
of the imposed homogeneous Dirichlet boundary conditions at the shock location, and consequent
reflections within the resolved domain, or whether imposition of (in)homogeneous Neumann far-field
pressure boundary conditions would preserve/alter the recovered structure, for example in terms of
the clearly identifiable wavelengths. Finally, in line with the analogous result obtained in the subsonic
case, stationary neutral eigenmodes are also found in the BiGlobal spectrum, here identified as family
D, a typical member of which is shown in figure 24. Both the different levels of disturbance pressure on
the wind- and lee side of the flow as well as the slightly non-symmetric nature of this mode can be seen.
The latter may be attributed either to poor spatial resolution of the basic state, although it is likely
that the symmetric about x = 0 counterpart of this mode may also be found in the eigenspectrum.
Another issue relevant to the existence of inviscid neutral modes, either stationary or travelling, has
been introduced in § 5, namely the ambiguity in the definition of a critical ’layer’ concept in the
solution of the inviscid two-dimensional eigenvalue problem. Even if one is satisfied from a physical
point of view that the present results are plausible solutions of the BiGlobal eigenvalue problem, the
neutral results obtained herein should be contrasted against of solutions of (2.28) employing complex
tensor-product grids before proclaimed as being physically relevant, which defines another potentially
interesting extension of the present work.
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Turning to the highest Mach number value monitored, one notes that on account of a zero angle of
attack the basic state is symmetric about both x = 0 and y = 0, which results in analogous symmetries
being preserved in the BiGlobal eigenvalue problem as well; a typical result is shown in figure 25. The
far-field location £, along the {—coordinate where homogeneous Dirichlet boundary conditions on
the disturbance pressure have been imposed, namely £, < &5, &5(n) denoting the shock location,
has been kept the same as in the M = 4 calculations. The main qualitative analogy between the
BiGlobal eigenspectra at M = 4 and M = 8 is that (alongside stationary and neutral modes) families
of travelling modes having analogous structure to families A and B are identified at M = 8 too. To
the extent that comparisons are permitted without having established that the modes in question at
M = 8 can be continuously obtained by systematically increasing the flow Mach number, the travelling
modes of a specific family at M = 8 are found to be more stable than their counterparts at M =4, a
result which is in line with the predictions of classic linear theory based on (6.10) on wave-like linear
disturbances.

In view of the qualitatively analogous results obtained in the M = 8 spectrum compared with the
M = 4 case, no further discussion of the BiGlobal eigenspectra is included here. Instead, a different
path in the multiparametric space at hand has been followed, namely investigation of the effect of
extending the domain on which the BiGlobal eigenvalue problem has been solved well beyond the
shock location. Motivation for this undertaking is provided by the different significance of the concepts
of 'wall-normal distance’ and ’far-field’ when employing (6.10) or (2.1). In the case of classic linear
theory a characteristic length scale in experimentation and calculations is provided by the thickness
of the boundary layer developing on the elliptic cone. By contrast, the BiGlobal instability analysis
results obtained so far at the lower Mach numbers point to the existence of large-scale disturbances
which scale with the elliptic cone semiaxes. In this framework the shock location is too close to the cone
surface to be considered as an appropriate "far-field’ position at which homogeneous Dirichlet boundary
conditions on the disturbance pressure may be imposed. On the other hand, enlarging the extent of the
integration domain approximately by a factor four along the £ coordinate, in combination with the use
of an unmapped grid in the £ —direction which relies on the natural clustering of the elliptic confocal
system to resolve near-wall structures, may result in loss of resolution adjacent to the cone surface
and, possibly, inability to resolve wave-like disturbances scaling with the boundary layer thickness.
It is precisely the objective of this part of the present investigation to determine whether certain
instabilities exist that are insensitive to this domain change and determine their spatial structure.

The most interesting results of the latter investigation have been the following. First, analogously
with the narrower domain computations, stationary and travelling neutral modes exist, while a strong
modification of the location, in (S, 5;) parameter space, of the travelling eigendisturbances may be
observed on account of the wider integration domain. The spectra at the resolutions utilised which,
despite not having converged yet, demonstrate qualitatively consistent structure of their branches, are
shown in figure 26. Second, the spatial structure of stationary and travelling neutral modes, which
are marginally resolved at the resolutions utilised, points to the fact that these modes are sensitive to
the location of the imposition of the boundary condition. A typical result may be found in figure 27,
where it can be seen that no physical justification exists as to why homogeneous Dirichlet boundary
conditions should be imposed on the disturbance pressure at the chosen £, value; a different type of
boundary condition is necessary to capture these modes correctly. Third, by contrast, homogeneous
Dirichlet pressure boundary conditions appear to be adequate for travelling disturbances; members of
two different classes (i.e. branches of travelling modes in the eigenspectrum of figure 26) are shown
in figures 28 and 29. Interesting in these results are, at least, two facts. On the one hand, the shock
location (which may be inferred by comparison with the result of figure 25) does not appear to interfere
with / influence the spatial structure of such eigendisturbances which are smoothly reduced to zero
in the far-field. On the other hand, these two classes of modes are essentially different in one aspect,
namely their n—dependence: While the mode shown in figure 28 could be expected to be recovered by
application of (6.10) at appropriately higher resolution, that shown in figure 29 appears to fall outside
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the scope of the simplified linear analysis and require the present BiGlobal concept for its study. In
other words, within the framework of the assumptions of the present approach, there appear to exist
in the elliptic cone linearly amplified eigendisturbances which are localised in the neighbourhood of
the cone itself, scale with an O(1) geometrical length of the body in question and are beyond the
scope of the simplified linear theory. Further study to quantify this discovery, which is consistent at
all Mach numbers examined and could utilise existing experimental data or be performed in parallel
with new experimental efforts, is essential for progress in the theoretical understanding of instability
mechanisms operative in this technologically key flow configuration.
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7. Discussion

The present effort has commenced with the global instability analyses of the steady-state basic flows
on elliptic cones obtained in [25]. The three-dimensionality of the elliptic cone introduces a freedom
in the choice of coordinate systems which may be utilised to isolate different factors affecting flow
instability in a natural manner by appropriate choice of the coordinate system on which the analysis
is performed. Three different alternatives have been introduced, having distinct properties the merits
of which have been assessed. On grounds of numerical efficiency it has been proposed to conduct the
analysis on the elliptic confocal coordinate system, which is the two-dimensional analogon of the elliptic
cylindrical system in three-dimensional space. This mapping has (at least) three advantages; first, it
takes into account the essential elliptical nature of the geometry surface in a natural manner. Second,
it naturally clusters points in the boundary layer while the grid density decreases exponentially in
the far-field, thus permitting placing the outflow boundary at a large distance from the body surface
without wasting gridpoints in that region. Third, the analytical nature of the mapping permits the
calculation of metrics of the transformation without introduction of numerical error. A potential
disadvantage of the elliptic confocal coordinate system is that three-dimensionality of the flow in the
streamwise direction is neglected; however, this is consistent with the assumption of two-dimensional
global linear theory which neglects the dependence of the flow on the third spatial direction along the
elliptic cone axis, i.e. derivatives of flow quantities along this direction are neglected. In this manner
no additional physical information is expected to be lost on account of the choice of the coordinate
system compared with that implied by two-dimensional BiGlobal analysis.

The two-dimensional viscous compressible partial-derivative eigenvalue problem has been derived
in a cartesian coordinate system. Potential simplifications have been discussed one of which, the gen-
eralised Rayleigh equation, has been expressed in the elliptic confocal coordinate system as either a
temporal or a spatial eigenvalue problem; numerical prescriptions have been provided for its colloca-
tion. However, if a global inviscid instability analysis methodology is followed, the common approach
of shooting/iteration used in local inviscid analysis is inapplicable and the analysis must be performed
by solving the partial derivative eigenvalue problem as a nonsymmetric generalised matrix eigenvalue
problem. This may lead to inaccurate results on account of poor resolution of the critical layer(s) if
computations are performed on a real grid and weakly-amplified/damped or (near-) neutral modes
are sought. In order to circumvent this problem an algorithm has been presented which poses the
inviscid local eigenvalue problem as a matrix eigenvalue problem defined on complex spectral colloca-
tion calculation grids. Since this algorithm could become the cornerstone of a potential global inviscid
analysis, its accuracy and robustness has been demonstrated in several validation calculations of the
local inviscid eigenvalue problem in planar and curved geometries.

The numerical tools proposed for the solution of the compressible generalised Rayleigh equation have
been validated on model Poisson problems, devised to conform with the boundary conditions and mimic
the spatial structure of the expected eigendisturbances; exponential convergence of the model problem
solutions has been demonstrated. Attention has then been focussed on numerical aspects of the analysis
of three elliptic cone configurations at a variery of parameters/conditions in order for experience with
the different facets of this novel problem to be accumulated. Results obtained at all Reynolds and Mach
numbers studied point to the existence of large-scale instabilities, which scale with a geometric length
of the respective elliptic cone and not with the thickness of the boundary layer developing on its surface;
indeed, the persistence of large-scale eigendisturbances superimposed upon inviscid basic states a-priori
excludes the possibility that such disturbances can be associated with Tollmien-Schlichting instability
on the cone surface. Nevertheless, numerical evidence (in the form of well-resolved azimuthally-periodic
eigenmodes) has been obtained that the latter type of disturbance may also be resolvable if the
integration domain is restricted within the Mach cone (in supersonic/hypersonic flow). A persistent
finding of all analyses has been the appearance in the spectrum of neutral stationary and travelling
disturbances. Although several such eigenmodes are converged, the complex grid technique presented
must be used before neutral or marginally amplified/damped modes are proclaimed to be physically
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relevant. On the other hand, travelling disturbances with O(1) amplification rates have been identified,
which can be reasonably well resolved on real grids: while the maximally attained resolution at which
the model Poisson problems have been converged to within several significant places cannot be achieved
on present-day hardware when using the QZ algorithm for the eigenvalue problem, specific parts of
the eigenspectrum could be monitored with high resolution when using Krylov subspace iteration (e.g.
[26]).

Several questions are left open and new issues have been generated by the present effort. The
apparent ability of the methodology to address neutrally-stable travelling pressure eigendisturbances
points to a potential utilisation of BiGlobal instability analysis in a CAA context; such efforts should
be accompanied by theoretical considerations regarding the concept of critical ’layer’ of the two-
dimensional eigenvalue problem and the complex-grid algorithm presented herein. Subsonic flow has
been found easiest to resolve numerically, albeit that the restrictive assumptions of the generalised
Rayleigh equation may not permit studying such flows from a physical point of view when using
this type of inviscid analysis. Nevertheless, the reasonably accurate description of the area of flow
separation from an elliptic cone surface at an angle of attack points to the potential of BiGlobal
instability analysis to address the issue of vortex breakdown in this or high-angle-of-attack flow over
a delta-wing using this novel methodology. In the problem at hand, from a physical point of view, the
assumptions of inviscid theory are increasingly applicable as the flow Mach number increases. Although
subsonic BiGlobal calculations are the easiest to perform numerically, neglecting all but the streamwise
velocity component in this case is highly questionable and may confuse potential discrepancies of
BiGlobal instability analysis results with those of experiment/DNS. Consequently, further efforts on
BiGlobal instability analysis on the elliptic cone should focus on the supersonic/hypersonic regimes
alone. Further progress in this area is expected to be made by close interaction with experiment and/or
DNS, so that physically interesting configurations and parameter ranges are isolated and studied in
detailed in the framework of the present analysis.
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Appendix A. The elliptic confocal coordinate system

Take the conformal transformation

w=§<z+%), (A1)

where z and w are complex variables. In polar notation,

z =rell (A2)
which leads to

w = % ('r'ein + 1ein> . (A 3)

T
Introducing w = %(:1; + 4y), where ¢ is a real parameter, leads to

1 1
xzic(r-i- ;) cosn (A4)
1 1
y=5¢ (7‘—;) sin7 (A5)
Key to the transformation is the introduction of
r=ef, (A6)

which results in the relationship between the cartesian and the elliptic confocal coordinate system

x = ccosh & cosn (A7)
y = csinh ¢ siny, (A8)

¢ being identified as the focal distance of the ellipse.
Combining (A 3) and (A 6) one arrives at

x + iy = ccosh(€ + in) (A9)
which may be used to derive the inverse transformation, necessary for the numerical work in the
O¢&n plane given the basic flow results on the Oxy plane,

1
E+in = z cosh™!(z + iy). (A 10)
The semi-axes of the ellipse can be obtained by introducing into (A 7-A 8) the limits n = 0 and
n=m/2

a = ccosh¢, (A11)
b= csinhé. (A12)

Rearranging (A 11-A 12) the well-known relationship between the focal distance and the semiaxes
of the ellipse

=a -0 (A13)
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may also be obtained. Also, combining (A 11-A 12) the equation of the ellipse &, = c¢nst. describing
the wall boundary is obtained,

sinhé, b efv —efw
h¢, = ===\ Al4
tanh &y coshé, a efvtetw (A14)

This may be rearranged to arrive at

a+b . a+b

1
=1 =1
Ew 2na 2 n p (A 15)

which is the equation of the wall boundary in the elliptic confocal coordinate system in terms of the
semiaxes and focal distance of the ellipse.
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Appendix B. The temporal and spatial eigenvalue problems in elliptic confocal
coordinates

Given basic flow quantities and their derivatives on the elliptic confocal system, the eigenvalue
problems are defined by the matrices Ty — T2 and S — Si9,

g

Ty =Bvypp
T, = Bypp

Ty = (Bope® — BYPep® — 2B PP )
Ty = (BPBy® — ByPyp® — 287PP Dy )
Ty = (B p*0* — BBy ppw)

Ts =vpp

T7 =vpp

Ty = (pPe —1PeP)

Ty = (ppy —1PyD)

Tio= (3877 @ —h” B y5p)

Ty = -3Bp° W

Tiy =p°

S1 =wypp

So=wypp

Sy =w (pPe — VPP )

Si=w (ppy — 1Py

515 w352

So =7ppw

Sr=ppw

Ss = (Ppew — 7 pepi —2yPpiig )
So = (PPy @ — v, P —27PB iy )
Slo—3w2ﬁ2ﬂ)

in the temporal and spatial case, respectively.
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Appendix C. Calculation of differential operators
in arbitrary orthonormal coordinate systems

(a) Preliminaries

The first step required by differential form theory [11, 3] is to calculate the dual basis (&*,&", &%)
associated with a vector space according to the correspondence
vector components <= 1-Forms
)
(Vgy Un, Vp) (@, o™, &7
basis vectors basis 1-Forms
)
(es,en,€p) <~ (ds,dn,df).
The 1-Forms satisfy the schematic relation
dzr [%] = O, w [ek] = O, (C 1)

where square brackets signify application of the operator to the vector/1-Form inside the bracket
and ¢}, is the Kronecker delta.

The second step, is to use the dual basis to express the operators appearing in the equations of
motion. For example, the gradient operator is the 1-Form df, defined as the exterior derivative of a
scalar field f,

df = 0f /0x* dx', (C2)

z' being any chosen coordinate system and dz’ the corresponding basis 1-Forms. The definitions
(C1) are then used to express the coefficients of the expansion in (C2) in terms of the dual basis

{d}i}; the coefficients of the result express the gradient operator in an arbitrary coordinate system z°.

(1) GRADIENT

For simplicity of exposition of the ideas of differential form theory we calculate the gradient operator
in cylindrical coordinates. While this approach turns out to be rather long-winded for this simple
problem, differential form theory can also be applied in case no analytic expressions are available to
link the original and the target coordinate system; this is precisely the case with two of the three
coordinate systems discussed in § 3(c) in the elliptic cone.

In vector-component form the coordinate transformation is defined by

T T COS ¢
y | = rsing |.
ONED

This yields

dz = rcos ¢ dr — rsin ¢ do, (C3)
dy = rsin¢ dr + rcos ¢ do, (C4)
dz = dz. (C5)
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The unknown 1-Forms (&", &%, &%) can be expressed in terms of the basis 1-Forms (dz, dy, dz) as
0" = @y dr + @y dy + & dz,
@ = &Y dr + @ dy + @f dz,
0" = @ dr + @y, dy + @7 dz.

where GJ; are unknown coefficients. Application of (C1) yields three 3 x 3 systems for the unknown

coefficients (I); of the 1-Forms.
For example,

(G;; dz + &y, dy + @, dz) [er] =1
((:J; dz + &y, dy + &, dz) [e¢] =0,
(@1 dz+ &) dy + @7 dz)[e.] =0.

Substituting the basis 1-Forms (dz, dy, dz) in terms of (dr,d¢,dz) and recalling (C1), i.e. dr [e] -
1,d¢ [e,«] =0,dz [eT] = 0, the system

cos ¢ wy +sin ¢ wy, = 1/r,
—sin¢ wy + cos ¢ wy, =0,
wy, =0
is obtained from which wj = 1/rcos ¢, w;, = 1/rsin¢, and w; = 0 follows. Substitution of these

quantities into the expansion of @" and use of (C 3-C5) completes the calculation of @”. In an analogous
manner the other components of the dual basis are obtained,

w' =dr (C6)
w? =71 do (CT)
w® =dz. (C8)

Next, the dual basis calculated is used to express the gradient operator. In the chosen coordinate
system the gradient operator takes the form

of of of

& = 5y drt 5 dot 5 de
_8_f~r laf ¢ af~z
“w Y i Y o

where the 1-Forms (dr,d¢,dz) have been expressed in the calculated dual basis (C6-C8). One
recognizes that the components of the 1-Form

of 18f of
(E, ;%, &)

express the gradient operator in cylindrical coordinates.
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(b) The gradient operator in the (es,en,eqy) coordinate system of § 3(c)

In the problem at hand a vector can be expressed by the unit vectors (es, ey, ey) and the definition
of the coordinate transformation (3.23-3.25) yields

dr = acos¢ ds — (as + nbL)sin¢ dé + bL cos ¢ dn,
dy = bsin¢ ds + (bs + naL)cos ¢ dop + aLsin¢ dn,
dz =L ds — ab dn,

and
1 acos ¢
es=—| bsing | =
V'S I
&° = VS[acos ¢ do + bsing dy + L dz]
= \/§{ [a2 cos? ¢ + b? sin? ¢ + L2] ds + s[b2 - a2] sin ¢ cos ¢ dqb}, (C9)

1 Lbcos ¢
e, = \/—N ( La_s(i;;qﬁ) =
&" = V/N[Lbcos ¢ dz — Lasin¢ dy — ab dz]
= \/N{nL2 [a2 + b2] sin ¢ cos ¢ dep + L? [a2 sin? ¢ + b? cos? ¢ + 1] dn}, (C10)

1 a[b? + L?]sin ¢
€= — ( —bla? + L?] cos ¢ ) —
L[b? — a?]sin ¢ cos ¢

& = \/@{a[b2 + L?]sin ¢ dx — b[a* + L*] cos ¢ dy + L[b* — a*]sin ¢ cos ¢ dz},
= —V@{a(bQ + L2) [as + nbL] sin’ ¢ + b(a2 + L2) [bs + naL] cos? qﬁ} do. (C11)

The 3 x 3 system for the unknown basis 1-Forms (ds, dn, d$) can be solved for in terms of the dual
basis (@*,@", @?). In order to simplify the algebra we write

w* =wy ds + wy dp + 0 dn, (C12)
W" =0ds + wy dp + wy, dn, (C13)
@’ =0ds+wh dp +0 dn, (C14)

where

5= \/g[a2c052¢+1)25in2¢+L2],
wg = VSs [b2 — a2] sin ¢ cos ¢,
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[a + bQ] sin ¢ cos ¢,

6-3

\/_
VNL2[a?sin® ¢+ b? cos? ¢ + 1],

wg = —v6{a(8? + £?)[as + nbL] sin® ¢ + b(a? + L?) [bs + naL] cos® ¢}.
The solution of system (C12-C 14) is

oS
Il

ds = isa;s - L"eaﬂ, (C 15)
wg WiWe
d¢ = i{,aﬁ, (C 16)
“s
dn = inazn - w"’awf’. (C17)
wp WrWe
Rearranging the gradient operator (C2)
= (0f/0s) ds + (0f | 0p) dp + (0f /On) dn (C18)

by substituting (C15-C 17) into (C18) the gradient operator in the the coordinate system (s, n,0)
can be obtained,

_1of e 11 w_é_iafe 1 0f
¥ = i +[ - ]6¢ i (C19)
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Appendix D. Iterative scheme for the leading eigenvalue

At a given streamwise position (; equations (5.1-5.2) are discretised at the (N + 1) spectral col-
location grid points yielding a linear inhomogeneous algebraic system which can be expressed in the
form

_ Ay A2H<P]_
AX-Q@[Ag Al 5 = b, (D1)

where ¢ = (@0, ¢1,..., on) T, D = (Po,P1, ..., pn)T . The Nth and 2Nth lines of matrix A are reserved for
the boundary conditions. All but two elements of the vector b are zero. The nonzero elements appear
at the Nth and 2Nth positions corresponding to the asymptotic values of ¢ and p at the far-field
position 7,44, i.€., conditions (5.4-5.5).

Starting with a suitable initial guess of the required eigenvalue, the algebraic system (D 1) is solved
iteratively, by means of a Newton iteration scheme [17], until the impermeability condition on the
surface (i.e., ¢(0) = 0) is satisfied. The above described scheme is able to perform temporal as well
as spatial instability calculations giving spectrally accurate results at the same level of computing
effort. A similar iterative scheme was proposed by Malik [19] for the solution of viscous, compressible
instability equations on a real grid. Standard numerical library subroutines were used for the solution
of the linear system (D 1) and the evaluation of the modified Bessel functions. The non-zero elements
of the submatrices A1, Az, A3 and A4 of the system (D 1) are

Gi Wop;
A, =D; - 2 D2
S PRTTIG T W, — 6 (02
—iTy, ’I'LZC2 l(WO - /6)
Ay, = ! 1+ k - ! , D3
e = T, B) || TR G| T 03
io?(Wy, — B)
ASjk = TOJ. ) (D 4)
J
Dy
Ay, = A D5
b (ME) 9
for j =k, and
Ary, = Diy, (D6)
D;
— D
A4jk (’YMgo)’ ( 7)
for j # k, where j,k = 0,2, ..., N. The elements of vector b are given by
bj =0, if j# N and j # 2N, (D8)
1 . .
by = §[Kn+1(77i) + Kjp—1) (%)), (D9)
MZiary(1 = B)Kn (i)
boy = = D10
M Mg e (P10
where

i = 2all — MZ(1 = BHM2(1/¢ + A + Nmaa)s
and j,k=0,2,...,2N.
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d2 =0.05

62 =0.1

d2 = 0.15

48
64
80
96

0.856328 +i 0.000000
0.856543 +i 0.000000
0.856937 +i 0.000000
0.857174 +i 0.001755

c
0.856333 +i 0.000418
0.856357 +i 0.000407
0.856356 +i 0.000408
0.856356 +i 0.000408

c
0.856129 +i 0.000355
0.856382 +i 0.000395
0.856354 +i 0.000412
0.856356 +i 0.000408

c
0.855075 —i 0.000462
0.856723 —i 0.000134
0.856228 +i 0.000550
0.856324 +i 0.000356

Table 1. Dependence of the eigenvalue ¢ on the number of collocation nodes and the complex mapping parameter d» in the case

of planar, compressible, adiabatic flow for & = 0.365 (mode II) and My = 3.8.
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Mode I Mode II
N Dmaz l 41 w =0.0386,n =3 w=0.334,n=0
a o

32 25 25 —0.05 0.0560338 —i 0.003137 0.367236 —i 0.004590
64 25 25 —0.05 0.050338 —i 0.003137 0.366888 —i 0.004487
80 25 25 —0.05 0.0560339 —i 0.003136 0.366903 —i 0.004485
96 25 25 —0.05 0.050339 —i 0.003136 0.366903 —i 0.004485
80 40 40 —0.04 0.050339 —i 0.003136 0.366905 —i 0.004483
90 60 60 —0.04 0.050339 —i 0.003136 0.366902 —i 0.004483

Table 2. Dependence of the eigenvalues on the number of collocation nodes and the mappings parameters, for the case of
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NE Nn o fale=a,y=0) fs(x=0a,y=0) fa(zx=0a,y=0)

10 10 -0.901970 -1.360926 -0.863940
20 20 -0.901970 -1.367825 -0.867146
40 40 -0.901970 -1.375666 -0.868566
80 80 -0.901970 -1.375823 -0.868586

Table 3. Convergence history of numerical solution of the Poisson problems H, S and A, subject to homogeneous Neumann
boundary conditions. N§ and N7 respectively denote the number of collocation points along the £ and n coordinate directions.
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Figure 1. The confocal elliptical coordinate system O&n.
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el ~ "P_0(y_0,z_0)

Figure 2. Projection of the coordinates on the plane z = 0
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Figure 3. Projection of the coordinates on the plane z = cnst.
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Figure 5. One orthogonal body-fitted coordinate system which defines the Oné plane on which a global instability analysis can
be performed.
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Figure 6. Frequencies ¢, and growth rates ¢; of mode I (dashed) and II (dash—dotted) instabilities as function of the wavenumber
a in My = 3.8 boundary-layer flow over an insulated flat plate. Superimposed, denoted by open symbols, are the results of [8].
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107 Eigenvalues of the main unstable modes at {=0.05 for M_=3.8
X
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Figure 7. Temporal instability results. Distribution of the temporal growth rate ac; with a for modes I and II, ¢ = 0.05 and
various azimuthal wavenumbers. For comparison, the results of [9] are also shown indicated by symbols.
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Figure 8. Calculation of geometric parameters on the instability analysis plane
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Figure 9. The structure of the matrix discretizing the spatial eigenvalue problem
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Figure 10. Convergence of the numerical solution of the Poisson problems S and A on the elliptic confocal grid
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Dirichlet BCs

Meumann BCs

Figure 11. Numerical solution of the Poisson problem (6.1) using (6.3). Upper: f(¢ = &w,n) = 0; lower
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Figure 12. Numerical solution of the Poisson problem (6.1) using (6.4). Upper: f(¢ = &w,n) = 0; lower
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Inviscid global instability of flow on an elliptic cone

Figure 13. Numerical solution of the Poisson problem (6.1) using (6.5). Upper: f(§ = &w,n) = 0; lower
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Figure 14. A qualitative view of the basic flow velocity components at M = 0.5[25]; from left to right, w, 9, @.
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Figure 15. A qualitative view of the basic flow velocity components at M = 8.0[25]; from left to right, w, v, .
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Spatial BiGlobal Eigenspectrum at M = 0.5
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Figure 16. Eigenvalue spectra at M = 0.5 and resolutions 20 x 20 and 30 x 30
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Stationary Mode

Stationary Mode Stationary Mcde

Figure 17. A stationary mode at M = 0.5. Upper p, lower left ¢, lower right py.
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Stationary M
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Figure 18. A stationary mode at M = 0.5. Upper 7, lower left ¢, lower right py.
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Stationary Maode

Figure 19. A stationary mode at M = 0.5. Upper 7, lower left ¢, lower right py.
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Spatial BiGlobal Eigenspectrum at M = 4

10
"Qz.20"u1l2 -+
"QZ30"ul2  x
xooxx x ey, & o, PRt % XX
* % o . X *
5 w % *
x . - x
omn J—
o s W
ey B .+
g e o -
LY P
@~ 0 - . e Ead oI - o=
o o D % S,
¥ .+ *, X
ot 3” ”’n Hoox
B B
. .
g R~
Plate s
R Xk
* B N x
5 * R R x
s 1. P PE—
P Mgt b 5, A gl * x xxcx
10 . . .
40 -20 0 20 40
Bf

Figure 20. Eigenvalue spectra at M = 4 and resolutions 20 x 20 and 30 x 30
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Inviscid global instability of flow on an elliptic cone

Traveling Mode

Figure 21. A travelling mode - member of family A - at M = 4.0. Upper p, lower left p¢, lower right p;,.
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Figure 22. A travelling mode - member of family B - at M = 4.0. Upper p, lower left f¢, lower right p,.
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Inviscid global instability of flow on an elliptic cone

Traveling Neutral Mode

Travelling Neutral Mode
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Figure 23. A travelling neutral mode - member of family C - at M = 4.0. Upper p, lower left f¢, lower right f;.
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Figure 24. A stationary mode - member of family D - at M = 4.0. Upper p, lower left f¢, lower right py,.
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Stationary Neutral Mode

Figure 25. A stationary neutral pressure eigenmode at M = 8.0.
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Spatial BiGlobal Eigenspectrum at M = 8
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Figure 26. Eigenvalue spectra at M = 8 and resolutions 102,202 and 252
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Figure 27. A stationary neutral mode at M = 8.0. Upper p, lower left fi¢, lower right p.
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Figure 28. Disturbance pressure travelling eigenmode at M = 8.0. Upper, full calculation domain; lower, detail in the
neighbourhood of the elliptic cone.
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Traveling Amplified

Figure 29. Disturbance pressure travelling eigenmode at M = 8.0. Upper, full calculation domain; lower, detail in the
neighbourhood of the elliptic cone.
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